PHYSICAL REVIEW E, VOLUME 63, 066304
Diffusion in biased turbulence
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I. INTRODUCTION ity fields that have a constant average. The LVC and the
time-dependentrunning diffusion coefficient in a biased
This paper deals with the diffusion processes induced aurbulence are thus determined.
large scales in stochastic velocity fields. More precisely, we We show that the presence of an average component of
consider particle motion in two-dimensional incompressiblethe velocity V4 produces the following effects. In a static
velocity fields that can be either static or time-dependenvelocity fieldv(x), the drift V4 determines a transition from
stochastic fields. In this context, the effects of a constang subdiffusive to a superdiffusive or diffusive process, de-
average value of the stochastic velocity on particle diffusiorpending on the ratio 0¥ to the amplitudeV of the stochas-
is determined. This is a generic problem that appears in vartic velocity. At small values oy (V4<V), the diffusion
ous studies in fluid and plasma turbulence, astrophysics, meoefficient alongvy does not saturate but it is linear in time.
teorology, oceanography, or solid state phys$ids The MSD is superdiffusive of ballistic type and scaless
The diffusion coefficient and the mean square displaceThe average displacement is linear in time but the average
ment (MSD) depend on the Lagrangian velocity correlation Lagrangian velocity is smaller thavyy. We show that these
(LVC), a rather complicated statistical quantity that containsare nonlinear effects determined by trajectory trapping in the
the stochastic velocity field and the resulting stochastic trastructure of the stochastic velocity field. Wheg>V, a fi-
jectories. A dimensionless quantity, the Kubo numKeiis  nite diffusion coefficient in the direction d¥4 is obtained
defined(see Sec. )lin order to measure the capacity of the and the average Lagrangian velocity is equal to the Eulerian
trajectories to explore the space structure of the stochast@verageVy. The transport acros¥y remains subdiffusive
velocity field before the latter changes due to the time variafor all values ofVy.
tion. At small values ofK (quasilinear regimethe time In time-dependent stochastic velocity fields with nonzero
variation of the stochastic velocity is fast and the trajectorieqverage, both the diffusion coefficients along and acxgss
have no time to “see” the shape of this field. The resultsare finite. The average Lagrangian velocity equéls This
concerning the statistics of the trajectories are well estabbehavior is determined by the time variation of the stochastic
lished in this case: the displacements are Gaussian and havelocity field which eventually releases all trajectories. We
a mean square growing linearly in time with a diffusion co- show that the process of trajectory trapping combined with
efficienth,~K2 [2,3]. At large K (nonlinear regimg the  the average drift determines an “anomalous” diffusion re-
direct numerical simulation§4—6] have shown that a dy- gime with a strongly increased diffusion coefficient aldhg
namical trapping of the trajectories appears and produces ttend a significantly reduced perpendicular diffusion. A de-
modification of the statistical properties of the displacementsailed study of the possible diffusion regimes is presented.
[4,7]. They are non-Gaussian and the diffusion coefficient The problem of average drifts was studied before for the
scales aD,~K?” with y=0.7 for the spectrum considered quasilinear cas¢13—16 or by means of an analogy with
in [6]. The existing analytical methods completely fail in percolation processd47,10,18. The effect of an average
describing this trapping proce$4] and the studies usually velocity is also treated in the context of diffusion advection
rely on the renormalization-group techniqug&9] or on  or random walkgsee the review pap¢8]) but these results
gualitative estimatefl0], and consequently they determine cannot be compared to ours since particle collisions consid-
only the asymptotic diffusion coefficient or the asymptotic ered in these models change significantly the effective diffu-
behavior of the MSD. We have proposed[irl] and[12] a  sion coefficients. We do not attempt here to evaluate the
statistical approach that determines the LVC and the timeprobability distribution function of particle displacements as
dependent diffusion coefficients. Analytical results valid forreviewed in a very recent papfk9] but restrict at determin-
an arbitrary value of the Kubo number are obtained for stoing the first two moments. Our results are qualitatively simi-
chastic velocity fields with a stationary and homogeneousar with those obtained numerically {20] and[21] where
Gaussian distribution, with a zero average, and with a givefrfieatures as trajectory trapping, enhanced diffusion along the
Eulerian correlation function. The method of decorrelationaverage drift, and ballistic regimes are evidenced in particle
trajectoried 11] is extended here to include stochastic veloc-motion in the two-dimensional turbulence with large vortical
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structures generated by the Hasegawa-Wakatani awhereV measures the amplitude of the fluctuating velocity.
Hasegawa-Mima equations. The Kubo number is thus the ratio of the average distance

The paper is organized as follows. The formulation of thecovered by the particles during the correlation time of the
generic problem is presented in Sec. Il together with a shorstochastic velocity field to its correlation length. It represents
summary of the results obtained in the absenc¥ of The  a measure of the particle’s capacity of exploring the space
solution for the static case is presented in Sec. lll. The difstructure of the velocity field before the latter changes. In
fusion in a time-dependent biased stochastic stream functiomathematical terms, this Kubo number determines the im-
is studied in Sec. IV. The conclusions are summarized irportance of the Lagrangian nonlinearity introduced in @g.
Sec. V. by the space dependence of the velocity field.

Since the velocity components are derivatives of the po-
II. TURBULENT DIFFUSION PROBLEM tential, they are Gaussian, stationary, and homogeneous as

_ ) ~well. The two-point EC of the velocity components,

The test parqcle gnd. passive scalar.turbulent d'ﬁus'or\Eij(x,t)z(ﬂi(0,0)'z}j(x,t)), and of the potential with the ve-

problem or the diffusion induced by continuous movements " ~ = _

relies on the Langevin equation locity, E¢iE_<¢(O,O)pi(x_,t)), are obtained fronE(x,t) by
the appropriate derivatives,

dx(t) ) ) )
gr —Vx(®,b, x(0)=0 D e P o P 3
11— Xg ’ 227 axi ’ 12— (9X1(9X2

where v(x,t) is a stochastic velocity field. The Langevin
equation(1) describes the motion of some point particles 9 9
which are advected by the stochastic velocity field. We con- Eip=—Ep1=— [?TE, Eop=— E¢2=ﬁ7E. (5)
sider here a two-dimensional space wheg represents the 2 1
trajectory of the particle in Cartesian coordinates
=(Xy,X2). The stochastic velocity(x,t) is a divergence-
free stochastic fieldV-v(x,t)=0 and it can thus be deter-

We assume that the velocity has a constant average value
(which is chosen to be along, axis

mined from a stream functioth(x,t)e,, as (V(x,))=Vge, (6)
VX D)= VX (X8, 2) and consequently the average stream function is
where e, is the unitary vector of the axis. In studies of B (x,1)= VX, @

magnetically confined plasmas, the velocity in Eb.is the

EXB drift, v(x,t)=—V¢°xe,/B, where ¢%(xt) is the The mean square displaceméMiSD) of the particles and
electrostatic potential an8 is the magnetic field strength e ynning diffusion coefficient are determined from the
considered to be constant. Thus the definition of the velocit)fwo_point correlation function of the Lagrangian velocity

field in plasma turbulence is similar with ER) with ¢= (LVC). The latter is defined as

— @®/B . In both cases the two componentsanuv, of the

velocity are determined in terms of a scalar stochastic field L--(t)=<§»(x(0) 07 (X(1) 1) ®)
1] - ] 1 ] ] 1]

¢(x,t) which is considered here to be a stationary and ho-

mogeneous Gaussian field. The distribution of the stream ~ _ _ , ,
function is thus determined by the averagk(x,t) where v(x(1),t)=v(x(1),1) = (v(x(1),1)) is the fluctuating

- . : . part of the velocity along the trajectofie., of the Lagrang-
=(¢(x,t)) and by the two-point Eulerian correlatiqkC) : :
function E(x.t). The latter is modeled by ian velocity. The MSD can be written as

~ ~ t
E(x,D)=(d(x1,t1) d(xg+x,t1+ 1)) = BZE(|xDh([t]), @ <Xi2(t)>:2fod Lii(7)(t=17) (€)

Where?&(x,t)zda(x,t)— (p(x,1)) is the fluctuating part of anld the rur21n|ng'd|ffu3|on coefficient, defined &s;(t)

& (x,t). Angular brackets denote the statistical average over 2 (d/dt)(xi (1)), is

the realizations of the stochastic stream function gnsl the .

ampl!tude of_the fluctua_t|ons ab. £(x) is a dn_’nensmnle_ss D”(t)=J drL(7), (10)
function having a maximum ak=0, where its value is 0

£(0)=1, and which tends to zero &g — . It actually de-

pends on the dimensionless variable\, where \ is the  provided that the LVC is stationary. The aim of this paper is
correlation lengthh(t) is a dimensionless, decreasing func- to determine the LVC, knowing the statistical description of
tion of time varying fromh(0)=1 to h()=0. It depends the stochastic stream function.

on the ratiot/ 7., wherer, is the correlation time. A dimen- ~ For small Kubo numberéguasilinear regimge the results
sionless parameter, théubo numbercan be defined as are well established13-16: the diffusion coefficient is
DoL=(N?/7)K? in the absence of an average drift/q

K=V7. /N, V=PI, (4) =0) and this value remains practically unchanged for small
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drift velocities, Vq<\/7.. At large values ofVy (Vq4
>\/7.), the diffusion coefficient alonyy becomes
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velocities. The unit of time is the characteristic flight time of
the particles through the correlation length of the stochastic

field: 7s=\/V. In the following calculationsYy is thus the
ratio of the average velocity to the amplitusfeof the fluc-
tuating velocity. The Langevin equatigh) can be written in
dimensionless quantities as

D11~ V2N Vg=(N?7)KVIVy. (11

Thus, it decreases witify asV,]l and is independent af; .
The diffusion coefficient perpendicular %, is as well a

decreasing function o¥ 4 but it depends on the space shape dx(t) ~
of the EC of the stream function, T =v(x(t))+Vyq, x(0)=0. (13
1 , Vch
Do~ v, x (12 We use the method presented[irl] for determining the

LVC and the diffusion coefficient for the trajectories ob-
tained from Eq(13). Actually, we apply here the space-time
decorrelation method presented in the Appendix of Ref].
The same method was used in Rdf2] for determining the
>max(\/7.,V). effect of particle collisions on the diffusion in stochastic ve-
At large K, in the absence of the drift velocityw/{=0), locity fields. _Th|§ methoq is aple to Qesqnbe the complex
due to the slow time variation, the trajectories can followProcess of dl_ffu§|on and intrinsic trapping in the structure of_
approximately the contour lines @(x,t). The space struc- the stocha}stlc fleld.. We show here that the success Qf this
ture of the stochastic stream function has an important infludPProach is due to its property of reproducing the invariance
ence on particle trajectories. This produces a trapping efof the Lagrangian stream function. _ _
fect: the trajectories are confined for long periods in small The essential point of our method consists of solving the
regions. A typical trajectory shows an alternation of largeb@ngevin equatiori13) in (disjoint) subsets of the ensemble
displacements and trapping events. The latter appear whé¥ realizations of the stochas_tlc stream.funcnon. These sub-
the particles are close to the maxima or minima of the po€nsembles(S) are characterized by given values of the
tential and consists of trajectory windiifpr many turng on strgam fgnctlon and of the velocity at the starting point of the
almost closed small size paths. The large displacements afgJectoriesx=0, t=0,
produced when the trajectories are at small absolute values
of the potential. We have developed in Rifl] a statistical #(0)=¢°,
method that succeeds in describing this trapping process. It
shows that the asymptotic diffusion coefficient has an algeThe stream function and the velocity reduced at the suben-
braic dependence oK, Dy~ (\?%/7)K” with a value ofy ~ semble(S) are still Gaussian stochastic fields but they are
=0.62 obtained there for a particular EC of the stream funchonhomogeneous and have modified average values that de-
tion. Generally, the exponentslightly depends on the large Pend on the EC,
|x| asymptotic behavior of the functiaf(|x|) in the Eulerian
correlation of(x,t) and varies around the above value. In ®5(X)=((X))s= VX + #°E(X) + (v] —V48j1) E;j 4(X),
the limit case of static stream functioffsozen turbulence
corresponding tor.=c, K=o, the trapping is permanent
and consequently particle motion is subdiffusive. The MSDV(x)=(v(X))s=Vq8i1+ ¢°E 4i(X) + (0]~ Vg1 Eji (%),
is still a growing function of time(x*(t))~t” due to the (16)
large size contour lines of(x) that allow large displace-
ments. The probability density for the displacements is dewhere(- - -)s represents the average over the realizations in
termined in[22] where a non-Gaussian result is found due tothe subensemble5j. The condition of the zero divergence is
the memory effects induced by the long time correlation ofreflected in the expressions of the Eulerian average values
the Lagrangian velocity. (15) and( 16) which are connected through an equation simi-
A finite average velocity Y4#0) can strongly influence lar to (2),
these results. The effect df; is studied in the next section
for the static stream function and in Sec. IV for the time-
dependent turbulence.

These estimates also hold at large Kubo numbeng,ifis
larger than the amplitude of the stochastic velo&ityThus,
the general condition for the regiméll),(12) is V4

v(0)=V°. (14)

d

VS(x) = ,
=15 7,

DS(x), 17

lll. FROZEN TURBULENCE which shows that the average velocity in the subensefhle

is divergence-freeV- VS(x,t)=0.
We consider first the case of static stream functig(s) We note that such subensemléte conditional average
that correspond ta,=% or K=. In these conditions the velocities were used for describing Eulerian properties of
EC of the stream function depends only on the distgrte stochastic fields because even in a homogeneous turbulence
and h(t)=1 in Eq. (3). We use dimensionless quantities they exhibit interesting structur¢23]. Studies of the suben-
(without changing the notatiopsvith the following units:\ semble Lagrangian averages are presentd@4hand[25];
for distancesg for the stream function, and= g/\ for the  they are different from the present analysis.
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Since the stream function is conserved along the trajec-
tory in each realization, the average Lagrangian stream func- Lij(t):J f de® dvO P1(¢%)P1(VO)(vi(0)v;(X(1)))s
tion in the subensembl) is
—Vgi{vj(x(1))s, (24

(p(x(1)))s= ¢° (18)

_ S _ where P,(¢°% and P,(v°) are, respectively, the Gaussian
at any time. A deterministic trajectody(t;S) can be defined  propability densities of the stream function and of the veloc-
in each subensemb(&) such that the average of the Eulerian ity in the pointx=0. We note that the LVC in the suben-
stream function in(S) [Eq. (15)] calculated along this trajec- gemble(S) is not stationary as the LVC in whole set of real-
tory equals the average Lagrangian stream fundtic, izations. However, one needs to estimate only

S(y (1. Q) — _ 40 (vi(O)vj(x(t)))s which is simply (v;(0)v;(x(1)))s
X)) =(dK(D)s= ¢ (19 =vi°<vj(x(t))>s. Thus, the LVC and the average Lagrangian

This “decorrelation trajectory” can be obtained from a Velocity can be obtained by estimating the average Lagrang-

Hamiltonian system of equations withS(X) as a Hamil- ian velocity in each subensembl8)( The latter is obtained
tonian function, by solving Eq920) and using Eq(21). The LVC can thus be
written as
P [ SO EY
dt 1aX" 9 ’ Lij ()= f f dp° dv® Py(6°) P (V)0 VF(X(L;S)).

and with the initial conditiorX (0;S) =0. The Hamiltonian is (29
conserved along the solution of Edq20): ®S(X(t;S)) . . L ) .
—0S(0) = ¢° and thusx(t:S) ensures the equalitL9). The The.t|me-dependent dl_ffu5|0n coefficient is obtained by inte-
average Lagrangian velocity if§) is approximated in Ref, 9rating Eq.(25) according to Eq10) as

[11] by the corresponding Eulerian quantity calculated along

the deterministic trajectorX(t;S), Dij(t)zj fd:ﬁo dvo Pl(ZbO)Pl(T/O)Z?Xj(t;S) (26)

~\/S .
V() s=VAX(ES). 2D and is thus determined by the average trajectories in the sub-

Since the latter is determined from EQO), where actually ensembles. We note that E¢4R5) and(26) are approximate

the right-hand side is the average Lagrangian velocity, onequations valid for arbitrary values of the Kubo number and

can deduce thaX(t;S) is an approximation of the average of Vy.

trajectory in §), In order to obtain an explicit solution for the LVC and the
diffusion coefficient, we choose a model for the Eulerian

X(t;S)=(x(1))s. (22 correlation of the stream functioi3):

We note that actually the approximati¢é®l) for the av- 1
erage Lagrangian velocity ifS) can be obtained using E(r)=&(r)= >, (27)
Corrsin factorization in(S) and neglecting all cumulants of 1+ r
the stochastic trajectories except the first phE It is pos- 2
sible to keep the second cumulant, too, but it has a negative
effect on the results: the trapping process is not properlyvherer =|x|. The equationg20) for the average trajectory in
described and the invariance of the average Lagrangiaf® become:
stream function in(S is lost. It is known[1,2] that when
such approximations are performed in the whole set of real- dX;

X,E’
R

+ i[(XzE'-I-XZRE")COSa
R3 1 2

izations, the results are even more inaccurate and they do not gt =Vt ¢’
describe at all the trapping process and the invariance of the
stream function. Thus, the space-time decorrelation trajec- — X X,(RE'—E’')sina],
tory method[11] is rather good, although it is apparently
based on a rough approximation. Any attempt to improve dX X.E' U
this method should satisfy the requirement of the invariance O [X,X,(RE'—E')cosa
of the stream function. dt R R
The average Lagrangian quantities in the whole ensemble —(X%E’ +X§RE”)sina] 28)

of realizations of¢ can be obtained by summing up the
contributions of each subensembl8)( The average La-

H 0 —_ 130 ’
grangian velocity and the LVCdefined in Eq.(8)] can be ~Wherea is the angle between” and V., u=[v°}, E'(R),
written as E"(R) are the first and second derivatives BfR), and R

= \/X21+ XZZ. The trajectory obtained from E@28) evolves

_ 040 0 0 on the contour line of the average stream functibf(X)
(V(X(t))>—f f dé”dv® P1(¢°)P1(V)(V(X(1))s, =®dS(0)= ¢° in the subensemble. The effect of the drift ve-
(23 locity V4 is the opening of a set of paths. This can be seen in
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' f ' ' Xy(t; = ¢%u,— @) =Xy(t;¢° u,a),

‘ Xo(t; = % u,—a)=—X,(t; %, u, ). (29

When used in the integrals in Eq26) these lead to
D1a(t)=D2y(t) =0,

¢)02+U2
Dyy(t)= 2n )3/2ff dg®du ? exp{ 3 )

X doz cosaX,(t: % u,a),
0

¢+ u?
Do(t)= 2 )SIZJJ d¢ldu v ex;{ 5

27
X | dasinaXy(t; ¢ u,a). (30)
0

Thus the diffusion tensor is diagonal and so is the LVC that
is obtained from Eq(30) by replacingX; by VP(X(t;S)).

The trapped average trajectories do not contribute to the
asymptotic diffusion coefficient nor to the large time LVC
because they are incoherently mixed in the integrals. Only
the opened average trajectories contribute at large time.
Their asymptotic expressions, deduced from E2B) and
from the conservation of the average stream functith),
are X, (t;S)=C(S) + V4t and X,(t;S)=— ¢°/V4 for t> 7.
Introduced in Egs.(30) they show thatDji(t) has an
asymptotic behavior linear in tim1,(t) — L4(Vg)t and that
D,,(t)—0. The constant ,(Vy) is the large time correlation
2 3 ) 1 2 3 P of the velocity alongvy,

L.(Vg)=Ilim L), 31
FIG. 1. (a) Examples of average paths for the driftless cdge a(Va) o 1V 3

=0 for ¢°=0, *0.1,+0.2,... u=1 anda= — 7/4. The size of
the.paths decreases continuously with the.increaw%f(b) Same  and since for the released trajectoriégX(t;S))—Vy, one
as in(a), but for a nonzero average velocityy=0.05. can see from Eq(25) thatL, can be written as

Fig. 1 where some paths corresponding\g=0 and V4 La(Vg)=V2(Vg)Vy, (32
=0.1 are plotted. In the driftless case, all paths except that ) - ) )
corresponding ta°=0 are closed curvel§ig. 1(a)], while whereV°(V,) is the average of? taken for the trajectories
atVy+0 the paths are opened for an interval of valuegsdf ~Which are released by, . This quantity is not zero because
around¢®=0 whose size increases wh¥y increase$Fig.  the release of the trajectories appears especially whds
1(b)]. There are still trapped average trajectofiesthe sub-  directed alongVy [a e (—#/2,7/2)]. An apparently para-
ensembles with large absolute values of the stream functiodoxical result is obtained, namely that particle trapping de-
¢°) but the drift V4 has a releasing effect for the averagetermines a superdiffusive transport.
trajectory in the subensembles with smafl. The average Thus, a small average drif¢y produces the transition
trajectories obtained from E@28) are functions of time, of from the subdiffusive regime to a superdiffusive one in the
the three parameters that define the subense(Shles°, u, direction ofV4, while across/ the process remains subdif-
a, and of V4. In the driftless case, the average trajectoriedusive. The superdiffusion is due to a large time remnant
are function of a scaled timé=ut and of a single parameter correlation of the velocity determined essentially by the fact
= ¢%u. The drift velocity V4 breaks the isotropy of the that the escaped trajectories “remember” the initial condi-
space introducing the dependence @mand also leads to tion that situated them on paths which open to infinity.
more complicated average paths determined by four indepen- The time evolution of the diffusion coefficient80) is
dent parameters. This largely increases the computation timpresented in Fig. (@) for V4=0.02. Two dimensionless char-
The solutions of Eqs(28) keep, however, the following acteristic times can be noticed there: the flight time-1
symmetry relations: and the drift timery=1/Ny, which is the time necessary to
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traverse the correlation length with the average velocity. Athat n(V4)—1 at largeVy showing that all trajectories are
small timet (t<7), the initial ballistic regime is observed released.L 4(V,) decays rapidly to zero wheN >1 and
D;;(t)=t and att> 7; trajectory trapping becomes effective thus the asymptotic ballistic term in the parallel diffusion
and produces the decay of the diffusion. The diffusion isdisappears and the motion becomes diffusive at &fgeAt
isotropic at this timeD4(t)=DJo(t) and both are actually V4<1, the asymptotic MSD is

equal to the diffusion coefficient obtained fgf= 0 (dashed

line). The effect of the average velocity appears farr, () =[N (Vg Vi+La(V)lt?, t>7 (36)

and determines the anisotropy of the diffusion. The diffusion

coefficient alongV, increases and eventually reaches theand the effective ballistic velocity appears a¥,,
ballistic regimeD 4(t)=L,t. The crossV diffusion coeffi- = \n?(Vq)Vi+La(Vq) Which is larger thaivg.

cient rapidly decays to zeff@sD,,(t)~t~ 2 in this casé It In conclusion, we can say that particle motion in a biased
is interesting to see how this picture evolves whégnin-  static stream function is rather complex and all the three
creases. WhelWy=1, no trapping decay appears and thetypes of evolution of the MSD appear: subdiffusion perpen-
asymptotic ballistic regime is pushed at later times and a newlicular to Vy; superdiffusion and diffusion alonyy, de-
transient regime of slowly increasind,,(t) appears[see pending on the value of the average velodfy. The effec-
Fig. 2b) for V4=1]. As V4 still increases, the slope of the tive transport results from a competition between the
transient regime goes to zero and its size extends-tcr. trapping effect produced by the fluctuating part of the sto-
Thus, atVg>1 a diffusive regime is obtaingdee Fig. 2c)  chastic velocity field and the releasing effect determined by

for V4q=10]. the average velocity.
The dispersion acrosg, is subdiffusive for all values of
the average velocity. The decay to zerdf(t) depends on IV. TIME-DEPENDENT TURBULENCE

the large|x| tail of the EC of the stream function and it can

be obtained analytically as We consider here the case of particle diffusion in a biased

time-dependent stochastic stream functipfx,t). The cor-
(Vyq) relation time . and the Kubo numbeK are finite. We use
v |E"(Vgt)], t>7q (33)  the same decorrelation trajectory method as in the static case.
d The aim is to estimate the averages of the Lagrangian
_ 0  402/9_ 12 3 o velocity in the subensembléS) which are sufficient for cal-
where  f(Vq)=[d¢’ du daexp(— /2= u*/2)u’sir' e, culatiné the LVC and the running diffusion coefficient. The
difficulty comes from the fact that the average of the La-
grangian stream function is not known in the time-dependent
roblem: Eq.(18) is not valid in this case since the stream
unction is no longer conserved along the trajectory in each
realization. However, the velocity is always tangent to the
contour lines ofep(x,t) and only the explicit time variation
of the stream function contributes to its variation along the
trajectory,

f
Do (t)~

with the limits of integration depending o, since the
integral is performed on the domain of initial conditions cor-
responding to untrapped trajectories. For the ), the
asymptotic time dependence of the perpendicular diffusio
coefficient isD,(t)~t 2 for all values ofV4. At largeVy,
when trajectory trapping is negligiblé(Vy)—1.

The average Lagrangian velocity is obtained from Eq.
(23) as

dp(x(t),t)/dt=adp(x(t),t)/ot. (37)

2 . ;{— 24 2
<U1(X(t))>_—(2ﬂ_)3/2f fo d¢®du uex 5

This equation can be used, in the particular case of the EC of
@(x,t) of the type(3), for determining the average of the
Lagrangian stream function. The latter will be used as a con-
straint in determining the approximation for the average La-
and its time evolution is shown in Fig(&. At small time  grangian velocity in(S). The average Eulerian stream func-
t<r the average Lagrangian velocity equals the Euleriartion ®5(x,t) in a subensembléS) can be written according
averageVy and att>7; it decays to a smaller asymptotic to Eq.(15) as

value due to the trapping of a part of the trajectofighose

contributions vanish due to incoherent mixing in the inte- @S(x,t)zvdx2+&>5(x)h(t), (39
grals in Eq.(34)]. The fraction of the untrapped trajectories

gé\/d) can be obtained from the average Lagrangian velocm(Nhere S

% f T daVL(X(L:S) (34)
0

S(x)=#°c+v,°¢,. In Lagrangian coordinates
X(t), this quantity has the following general structure:

(L) (35 O =(d(X(1) H)s=Ve(Xa(t))s+ G(DN(L) (39

n(Vy)=Ilim v,

t—oo

because the first term of E(B8) determines the first term in

WhenVy>1, n(Vg)=1 and(v,(x(t))=Vyq. Eqg. ( 39 and the time factoh(t) propagates unchanged
The remnant correlatioh ,(V4) and the number of un- from Eulerian to Lagrangian coordinates. Thelependence
trapped trajectorien(Vy) are plotted in Fig. 3. One can see of the stream functiori.e., the nonlinearity generates the
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Vy=0.02

10

FIG. 3. The fraction of untrapped trajectorie§V,) and the
remanent Lagrangian correlatién(Vy) as functions ol .

other time functionG(t) [which depends also oviy and on
h(t)]. Averaging Eq.(37) in the subensemble and using Eq.
(39) one obtains

d (), 1+ Sty s—(d(X(1)), 1)
=i, s
=G(t)h'(1). (40

Differentiating Eq.(39) and using Eq(40), an equation for
G(t) is obtained,

d
Vda<><2(t)>s+ G'(t)h(t)=0, (41
whose formal solution is
t 1 d
G(t)= ¢°—vdjodrﬁ (s (42

The subensemble average of the Lagrangian stream function
can thus be represented as a functional of the average trajec-
tory in (S),

®5(t)= ¢%h Vg4l h ftd 1 d
L(t)=¢"h(t)—Vy| h(t) . TﬁdeXz(T»s

- (Xz(t)>s> : (43

_ o o We define, as in the static case, a deterministic trajectory
FIG. 2. (a) The time-dependent diffusion coefficierds,(t) and  x (1. 5) 5o that the average of the Lagrangian stream function

D,,(t) normalized withg [Egs.(30)] and the average Lagrangian Is the aver f the Euleri lcul lona thi
velocity V, (t) = (v1(x(t))) [Eq(34)]. The diffusion coefficient for terg}leifoﬁy? average of the Eulerigncalculated along this

the driftless casédashed lingis also represented for comparision.

V4=0.02.(b) S i for Vq=1. S i for V
:dlo, (b) Same as ina) for V4 (c) Same as in(a) for Vy CDE(t):(IJS(X(t;S),t). (44)
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As in the static case we approximate the average Lagrangiano®

velocity by the Eulerian average calculated along the deter- V,=0.1
ministic trajectoryX(t;S), K =100
(VX(1), D))= VE(X(t;9).1). (45)

The average trajectory in the subensem{®ecan be deter-
mined by

d(x(t))s
dt

=VS(X(t;9),1). (46)

We note that Eqs(44), (45), and (46) are actually useful
only if an equation for the deterministic trajectoX(t;S)
can be deduced.

The average of the Lagrangian stream functid8) can

t=t, ! =1y t=t,

be written using Eq(46) as a functional of the deterministic 0. = = 5 ] 7

) 10 10 10 10 10 10°
trajectoryX(t;S), t
S o S h(t) FIG. 4. Same as in Fig.(d) but for the time-dependent case
L = - . = . i i =
dP(t)=¢"h(t) Vdf drV3(X(7;9), 7-)( h(7) 1) (K=100). The saturation of the diffusion coefficients can be ob
served.
(47)
We show that the solution of E¢44) where(I)f(t) is given The results are, however, rather different. Due to the time

by Eq. (47) can be obtained from the following time- variation of the stream function, the average velocity in each
dependent Hamiltonian system of equations Witf(X,t) as subensemble goes asymptotically\Mg and the average tra-

the Hamiltonian function: jectories obtained from Ed48) are all opened to infinity
dX(t;S) d d S X (H)=Cy(S)+V4t, t>K. (50
TR a_xz'_a_xl)q) (X,t) (48)

o N ) The trapping process still appears but it is only temporal:
and initial cond|_t|o_nX(0;S%=0. Using Eq(38), one can de-  after performing a number of rotatiofgependent on the five
termine the variation ofP>(X,t) along the solution of Eq. parameters in Eq48)], the initially trapped trajectories es-

(48) as cape to infinity alongVy. Consequentlyn(Vy)=1 and
dDSX(t-S b L.(Vy4)=0 for arbitrary values oly. A finite asymptotic
(X(t;9),1) S h'(®) diffusion coefficient along/ is obtained from Eq(30). It is
=[P>X(t;S),t) = VaXa(t;S)] . . ;
dt h(t) determined from the first term in E@50), the second one

exactly vanishes by integration over. The perpendicular

which integrated formally leads to diffusion coefficientD ,, saturates at a nonzero value in the

. h(t) time-dependent case. This can be seen in the asymptotic ap-
PSX(L;9),t)= ¢>0h(t)—Vdf drV%(X(r;S),T)( hC) _1> proximation of Eq.(48), which can be written as
0 T
dX;
(49 _—< — S S
T h(t)v ﬁtAdb (Vqt), t>K.

Comparing Eqgs(47) and(49), we conclude that the solution
of Eq. (48) ensures the equality of the two terms of E4¢)

at any time. The deterministic trajectoX(t;S), the solution

of Eqg. (48), is thus an approximation of the average trajec-
tory in the subensemble). We note that the essential con-
dition in obtaining these results is the factorization of the
time and space dependences in the EC of the stream func- K 1

tion. For general time-dependent stream functions that do not D22~f(Vd)W1 K> V_d (51)
have factorized EC, it was not possible to determine the av- (1 5 d)

erage Lagrangian potential it®). This method can still be

used but without the insurance of taking into account the

important constraint imposed by the stream function. Thevhere f(Vy) is the integral defined after E433) and ac-
average Lagrangian velocity and the time dependent diffucounts for particle trapping. At largéy, f(Vq)—1 and the
sion coefficients are calculated according to Bf#.and  quasilinear resul12) is recovered. Thus, the diffusion coef-
(30), respectively, as in the static case. ficient perpendicular t&/ is strongly dependent on the Eu-

The solution isX,(t)=— A®S(V4K)/V,4 and it determines in
Eqg. (30) the following estimate for the asymptotic perpen-
dicular diffusion coefficient using the EQ7):
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portant modifications of the diffusion coefficients while in
the quasilinear case the effect appears only at drift velocities
larger than the amplitude of the stochastic velochy%1).

V. CONCLUSIONS

In conclusion, we have obtained here analytical expres-
sions for the Lagrangian velocity correlations and for the
time-dependent diffusion coefficients of particle motion in
divergence-free stochastic velocity fields with constant aver-
ageV,. These results have been obtained by the decorrela-
tion trajectory method. It applies to Gaussian stochastic
fields which are homogeneous and stationary. We consider
both the static and the time-dependent problems.

100V =1 20V=1§ v ot V=§1 \ '\‘ Fo_r static stream functions, we have shown that t_he c_irift

102 4 et e ¢ v velocity Vy produce; th_e trans!tlon.from the subdn‘fuswg
107 107 107 10° 10’ process to a superdiffusive or diffusive transport, depending

Va on the value ofV4. In the absence of the average velocity

FIG. 5. The parallel,Dy;, and the perpendicularD,,, (V4=0), all tlrajectories are trapp_ed on the I.eveI. lines of the
asymptotic diffusion coefficients as functions \t§ for K=4, 20, stream function and particle motion is subdiffusive. A small
and 100. average velocity {4<V) releases only a fraction of trajec-

tories, n(Vy); the other remaining trajectories are localized

on small size contour lines of the stream function. A direct
Ie_rian corr_e_lation of the stream function. The parallel diffu- consequence of trajectory trapping is evidenced in the aver-
sion coefficient also depends on the EC but the dependen%(@e Lagrangian velocity which is smaller than the Eulerian
is similar to that found in the driftless case [ihl] and is  gpe by the facton(V,). A more subtle and apparently para-
rather weak. _ . o ~ doxical consequence of trapping is the superdiffusive, ballis-

~ An example of the time evolution of the diffusion coeffi- tjc pehavior of the MSD and of the parallel diffusion coeffi-

cients is presented in Fig. 4 where the transitory regimegient at large times. This is determined by the persistence of
obtained in the static cadéig. 2@)] can be seen up to 5 |ong time correlation of the fluctuating Lagrangian velocity
<7c. Whent= 7, the saturation of the diffusion coefficients parallel tov,. We determine the fraction of untrapped tra-
appears in both directions. The average Lagrangian velocCityectoriesn and the asymptotic Lagrangian velocity correla-
also plotted in this figure, shows the presence of the temporgjyn L, for arbitrary values oiV4. As V4 grows aboveV,
trapping of the trajec'gories: it is equ_all\qj att<r;, then it n(Vg)—1 andL,(V,) rapidly decays to zero, showing that
decays due to trapping and &t 7. it increases up to the || trajectories are released in the presence of such a large
Eulerian value due to the time variation of the stream funcyyift. Consequently, a diffusive regime is obtained at large
tion which releases all trajectories. V4. The transport acrodg, remains subdiffusive for all val-

The asymptotic diffusion coefficient®,; and D,, are  es of the drift velocity.
presented in Fig. 5 as functions of the average drift velocity For time-dependerstream functions, the transport is dif-
Vg for various values of the Kubo numbkr Three regimes  fysive both parallel and perpendicular\fg. We show that
can be identified. WheKVy<1, the average velocity does the average velocity can produce a very large amplification
not influence the diffusion and the transport is isotropic. Atof the diffusion parallel to/4 and an important reduction of
Vg>1, the quasilinear resulEgs. (11) and (12)] described  the perpendicular diffusion coefficient. The diffusion coeffi-
in Sec. Il is recovered. When there is no trajectory trappingients are determined for arbitrary values\af and of the
(K<1) only these two regimes appear. In the nonlinear casgypo numberk. An “anomalous” regime is identified and
(K>1) there is a third(*anomalous”) diffusion regime s shown to correspond to the existence of trajectory trap-
which is determined by the combined action of the averagging. It appears for average velocities smaller than the am-

velocity and trajectory trapping. It appears whég<1 and  piitude of the fluctuating part of the stochastic velocity,(
K>1 so thatkKVy>1 (beyond the vertical dotted lines in <y and at large Kubo numbers so thav,/V>1.

Fig. 5 and consists of a very strong amplification of the
parallel diffusion coefficient and a decrease of the perpen-
dicular diffusion(see Fig. %, the dependence of4 of the
latter can be approximated by E&J1) and is weaker than in M.V. and F.S. thank their colleagues in Cadarache for
the quasilinear case due to trajectory trapdibg the factor  very useful discussions and for their warm hospitality. This
f(Vg)]. We note that in this regime an average velocitywork has benefited from a NATO Linkage Grant No.
smaller than the stochastic oné < 1) determines very im- PTS.CLG.977397.
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