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Diffusion in biased turbulence
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Particle transport in two-dimensional divergence-free stochastic velocity fields with constant average is
studied. Analytical expressions for the Lagrangian velocity correlation and for the time-dependent diffusion
coefficients are obtained. They apply to stationary and homogeneous Gaussian velocity fields.
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I. INTRODUCTION

This paper deals with the diffusion processes induced
large scales in stochastic velocity fields. More precisely,
consider particle motion in two-dimensional incompressi
velocity fields that can be either static or time-depend
stochastic fields. In this context, the effects of a const
average value of the stochastic velocity on particle diffus
is determined. This is a generic problem that appears in v
ous studies in fluid and plasma turbulence, astrophysics,
teorology, oceanography, or solid state physics@1#.

The diffusion coefficient and the mean square displa
ment ~MSD! depend on the Lagrangian velocity correlati
~LVC!, a rather complicated statistical quantity that conta
the stochastic velocity field and the resulting stochastic
jectories. A dimensionless quantity, the Kubo numberK, is
defined~see Sec. II! in order to measure the capacity of th
trajectories to explore the space structure of the stocha
velocity field before the latter changes due to the time va
tion. At small values ofK ~quasilinear regime! the time
variation of the stochastic velocity is fast and the trajector
have no time to ‘‘see’’ the shape of this field. The resu
concerning the statistics of the trajectories are well es
lished in this case: the displacements are Gaussian and
a mean square growing linearly in time with a diffusion c
efficient Dql;K2 @2,3#. At large K ~nonlinear regime!, the
direct numerical simulations@4–6# have shown that a dy
namical trapping of the trajectories appears and produces
modification of the statistical properties of the displaceme
@4,7#. They are non-Gaussian and the diffusion coeffici
scales asDtr;Kg with g50.7 for the spectrum considere
in @6#. The existing analytical methods completely fail
describing this trapping process@4# and the studies usuall
rely on the renormalization-group techniques@8,9# or on
qualitative estimates@10#, and consequently they determin
only the asymptotic diffusion coefficient or the asympto
behavior of the MSD. We have proposed in@11# and @12# a
statistical approach that determines the LVC and the tim
dependent diffusion coefficients. Analytical results valid f
an arbitrary value of the Kubo number are obtained for s
chastic velocity fields with a stationary and homogene
Gaussian distribution, with a zero average, and with a gi
Eulerian correlation function. The method of decorrelati
trajectories@11# is extended here to include stochastic velo
1063-651X/2001/63~6!/066304~10!/$20.00 63 0663
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ity fields that have a constant average. The LVC and
time-dependent~running! diffusion coefficient in a biased
turbulence are thus determined.

We show that the presence of an average componen
the velocity Vd produces the following effects. In a stat
velocity field v(x), the drift Vd determines a transition from
a subdiffusive to a superdiffusive or diffusive process, d
pending on the ratio ofVd to the amplitudeV of the stochas-
tic velocity. At small values ofVd (Vd!V), the diffusion
coefficient alongVd does not saturate but it is linear in time
The MSD is superdiffusive of ballistic type and scales ast2.
The average displacement is linear in time but the aver
Lagrangian velocity is smaller thanVd . We show that these
are nonlinear effects determined by trajectory trapping in
structure of the stochastic velocity field. WhenVd@V, a fi-
nite diffusion coefficient in the direction ofVd is obtained
and the average Lagrangian velocity is equal to the Eule
averageVd . The transport acrossVd remains subdiffusive
for all values ofVd .

In time-dependent stochastic velocity fields with nonze
average, both the diffusion coefficients along and acrossVd
are finite. The average Lagrangian velocity equalsVd . This
behavior is determined by the time variation of the stocha
velocity field which eventually releases all trajectories. W
show that the process of trajectory trapping combined w
the average drift determines an ‘‘anomalous’’ diffusion r
gime with a strongly increased diffusion coefficient alongVd
and a significantly reduced perpendicular diffusion. A d
tailed study of the possible diffusion regimes is presente

The problem of average drifts was studied before for
quasilinear case@13–16# or by means of an analogy with
percolation processes@17,10,18#. The effect of an average
velocity is also treated in the context of diffusion advecti
or random walks~see the review paper@8#! but these results
cannot be compared to ours since particle collisions con
ered in these models change significantly the effective di
sion coefficients. We do not attempt here to evaluate
probability distribution function of particle displacements
reviewed in a very recent paper@19# but restrict at determin-
ing the first two moments. Our results are qualitatively sim
lar with those obtained numerically in@20# and @21# where
features as trajectory trapping, enhanced diffusion along
average drift, and ballistic regimes are evidenced in part
motion in the two-dimensional turbulence with large vortic
©2001 The American Physical Society04-1
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structures generated by the Hasegawa-Wakatani
Hasegawa-Mima equations.

The paper is organized as follows. The formulation of t
generic problem is presented in Sec. II together with a sh
summary of the results obtained in the absence ofVd . The
solution for the static case is presented in Sec. III. The
fusion in a time-dependent biased stochastic stream func
is studied in Sec. IV. The conclusions are summarized
Sec. V.

II. TURBULENT DIFFUSION PROBLEM

The test particle and passive scalar turbulent diffus
problem or the diffusion induced by continuous moveme
relies on the Langevin equation

dx~ t !

dt
5v„x~ t !,t…, x~0!50 ~1!

where v(x,t) is a stochastic velocity field. The Langev
equation~1! describes the motion of some point particl
which are advected by the stochastic velocity field. We c
sider here a two-dimensional space wherex(t) represents the
trajectory of the particle in Cartesian coordinatesx
[(x1 ,x2). The stochastic velocityv(x,t) is a divergence-
free stochastic field:“•v(x,t)50 and it can thus be deter
mined from a stream functionf(x,t)ez , as

v~x,t !5¹3f~x,t !ez , ~2!

where ez is the unitary vector of thez axis. In studies of
magnetically confined plasmas, the velocity in Eq.~1! is the
E3B drift, v(x,t)52“fe3ez /B, where fe(x,t) is the
electrostatic potential andB is the magnetic field strengt
considered to be constant. Thus the definition of the velo
field in plasma turbulence is similar with Eq.~2! with f5
2fe/B . In both cases the two componentsv1 an v2 of the
velocity are determined in terms of a scalar stochastic fi
f(x,t) which is considered here to be a stationary and
mogeneous Gaussian field. The distribution of the stre
function is thus determined by the averageF(x,t)
[^f(x,t)& and by the two-point Eulerian correlation~EC!
function E(x,t). The latter is modeled by

E~x,t ![^f̃~x1 ,t1!f̃~x11x,t11t !&5b2E~ uxu!h~ utu!,
~3!

where f̃(x,t)[f(x,t)2 ^f(x,t)& is the fluctuating part of
f(x,t). Angular brackets denote the statistical average o
the realizations of the stochastic stream function andb is the
amplitude of the fluctuations off. E(x… is a dimensionless
function having a maximum atx50, where its value is
E„0)51, and which tends to zero asuxu→`. It actually de-
pends on the dimensionless variablex/l, where l is the
correlation length.h(t) is a dimensionless, decreasing fun
tion of time varying fromh(0)51 to h(`)50. It depends
on the ratiot/tc , wheretc is the correlation time. A dimen
sionless parameter, theKubo numbercan be defined as

K5Vtc /l, V5b/l, ~4!
06630
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whereV measures the amplitude of the fluctuating veloci
The Kubo number is thus the ratio of the average dista
covered by the particles during the correlation time of t
stochastic velocity field to its correlation length. It represe
a measure of the particle’s capacity of exploring the sp
structure of the velocity field before the latter changes.
mathematical terms, this Kubo number determines the
portance of the Lagrangian nonlinearity introduced in Eq.~1!
by the space dependence of the velocity field.

Since the velocity components are derivatives of the
tential, they are Gaussian, stationary, and homogeneou
well. The two-point EC of the velocity component
Ei j (x,t)[^ṽ i(0,0)ṽ j (x,t)&, and of the potential with the ve
locity, Ef i[^f̃(0,0)ṽ i(x,t)&, are obtained fromE(x,t) by
the appropriate derivatives,

E1152
]2

]x2
2

E, E2252
]2

]x1
2

E, E125
]2

]x1]x2
E,

E1f52Ef152
]

]x2
E, E2f52Ef25

]

]x1
E. ~5!

We assume that the velocity has a constant average v
~which is chosen to be alongx1 axis!

^v~x,t !&5Vde1 ~6!

and consequently the average stream function is

F~x,t !5Vdx2 . ~7!

The mean square displacement~MSD! of the particles and
the running diffusion coefficient are determined from t
two-point correlation function of the Lagrangian veloci
~LVC!. The latter is defined as

Li j ~ t ![^ṽ i„x~0!,0…ṽ j„x~ t !,t…&, ~8!

where ṽ„x(t),t…5v„x(t),t…2^v„x(t),t…& is the fluctuating
part of the velocity along the trajectory~i.e., of the Lagrang-
ian velocity!. The MSD can be written as

^xi
2~ t !&52E

0

t

d tLii ~t!~ t2t! ~9!

and the running diffusion coefficient, defined asDii (t)
[ 1

2 (d/dt)^xi
2(t)&, is

Dii ~ t !5E
0

t

dt Lii ~t!, ~10!

provided that the LVC is stationary. The aim of this paper
to determine the LVC, knowing the statistical description
the stochastic stream function.

For small Kubo numbers~quasilinear regime!, the results
are well established@13–16#: the diffusion coefficient is
DQL5(l2/tc)K

2 in the absence of an average drift (Vd
50) and this value remains practically unchanged for sm
4-2
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DIFFUSION IN BIASED TURBULENCE PHYSICAL REVIEW E63 066304
drift velocities, Vd!l/tc . At large values of Vd (Vd
@l/tc), the diffusion coefficient alongVd becomes

D11;V2l/Vd5~l2/tc!KV/Vd . ~11!

Thus, it decreases withVd asVd
21 and is independent oftc .

The diffusion coefficient perpendicular toVd is as well a
decreasing function ofVd but it depends on the space sha
of the EC of the stream function,

D22;
1

Vd
UE 8S Vdtc

l D U. ~12!

These estimates also hold at large Kubo numbers ifVd is
larger than the amplitude of the stochastic velocityV. Thus,
the general condition for the regime~11!,~12! is Vd
@max(l/tc ,V).

At large K, in the absence of the drift velocity (Vd50),
due to the slow time variation, the trajectories can follo
approximately the contour lines off(x,t). The space struc
ture of the stochastic stream function has an important in
ence on particle trajectories. This produces a trapping
fect: the trajectories are confined for long periods in sm
regions. A typical trajectory shows an alternation of lar
displacements and trapping events. The latter appear w
the particles are close to the maxima or minima of the
tential and consists of trajectory winding~for many turns! on
almost closed small size paths. The large displacements
produced when the trajectories are at small absolute va
of the potential. We have developed in Ref.@11# a statistical
method that succeeds in describing this trapping proces
shows that the asymptotic diffusion coefficient has an al
braic dependence onK, Dtr;(l2/tc)K

g with a value ofg
50.62 obtained there for a particular EC of the stream fu
tion. Generally, the exponentg slightly depends on the larg
uxu asymptotic behavior of the functionE(uxu) in the Eulerian
correlation off(x,t) and varies around the above value.
the limit case of static stream functions~frozen turbulence!
corresponding totc5`, K5`, the trapping is permanen
and consequently particle motion is subdiffusive. The MS
is still a growing function of timê xi

2(t)&;tg due to the
large size contour lines off(x) that allow large displace
ments. The probability density for the displacements is
termined in@22# where a non-Gaussian result is found due
the memory effects induced by the long time correlation
the Lagrangian velocity.

A finite average velocity (VdÞ0) can strongly influence
these results. The effect ofVd is studied in the next sectio
for the static stream function and in Sec. IV for the tim
dependent turbulence.

III. FROZEN TURBULENCE

We consider first the case of static stream functionsf(x)
that correspond totc5` or K5`. In these conditions the
EC of the stream function depends only on the distanceuxu
and h(t)51 in Eq. ~3!. We use dimensionless quantitie
~without changing the notations! with the following units:l
for distances,b for the stream function, andV5b/l for the
06630
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velocities. The unit of time is the characteristic flight time
the particles through the correlation length of the stocha
field: t f5l/V. In the following calculations,Vd is thus the
ratio of the average velocity to the amplitudeV of the fluc-
tuating velocity. The Langevin equation~1! can be written in
dimensionless quantities as

dx~ t !

dt
5 ṽ„x~ t !…1Vd , x~0!50. ~13!

We use the method presented in@11# for determining the
LVC and the diffusion coefficient for the trajectories o
tained from Eq.~13!. Actually, we apply here the space-tim
decorrelation method presented in the Appendix of Ref.@11#.
The same method was used in Ref.@12# for determining the
effect of particle collisions on the diffusion in stochastic v
locity fields. This method is able to describe the comp
process of diffusion and intrinsic trapping in the structure
the stochastic field. We show here that the success of
approach is due to its property of reproducing the invaria
of the Lagrangian stream function.

The essential point of our method consists of solving
Langevin equation~13! in ~disjoint! subsets of the ensembl
of realizations of the stochastic stream function. These s
ensembles~S! are characterized by given values of th
stream function and of the velocity at the starting point of t
trajectoriesx50, t50,

f~0!5f0, v~0!5v0. ~14!

The stream function and the velocity reduced at the sub
semble~S! are still Gaussian stochastic fields but they a
nonhomogeneous and have modified average values tha
pend on the EC,

FS~x![^f~x!&S5Vdx21f0E~x!1~v j
02Vdd j 1!Ej f~x!,

~15!

Vi
S~x![^v i~x!&S5Vdd i11f0Ef i~x!1~v j

02Vdd j 1!Eji ~x!,
~16!

where^•••&S represents the average over the realizations
the subensemble (S). The condition of the zero divergence
reflected in the expressions of the Eulerian average va
~15! and~ 16! which are connected through an equation sim
lar to ~2!,

VS~x!5S ]

]x2
,2

]

]x1
DFS~x!, ~17!

which shows that the average velocity in the subensemble~S!
is divergence-free:¹•VS(x,t)50.

We note that such subensemble~or conditional! average
velocities were used for describing Eulerian properties
stochastic fields because even in a homogeneous turbul
they exhibit interesting structures@23#. Studies of the suben
semble Lagrangian averages are presented in@24# and @25#;
they are different from the present analysis.
4-3
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Since the stream function is conserved along the tra
tory in each realization, the average Lagrangian stream fu
tion in the subensemble~S! is

^f„x~ t !…&S5f0 ~18!

at any time. A deterministic trajectoryX(t;S) can be defined
in each subensemble~S! such that the average of the Euleria
stream function in~S! @Eq. ~15!# calculated along this trajec
tory equals the average Lagrangian stream function~18!,

FS
„X~ t;S!…5^f„x~ t !…&S5f0. ~19!

This ‘‘decorrelation trajectory’’ can be obtained from
Hamiltonian system of equations withFS(X) as a Hamil-
tonian function,

dX~ t;S!

dt
5S ]

]X2
,2

]

]X1
DFS

„X~ t;S!… ~20!

and with the initial conditionX„0;S)50. The Hamiltonian is
conserved along the solution of Eq.~20!: FS

„X(t;S)…
5FS(0)5f0 and thusX(t;S) ensures the equality~19!. The
average Lagrangian velocity in~S! is approximated in Ref.
@11# by the corresponding Eulerian quantity calculated alo
the deterministic trajectoryX(t;S),

^v„x~ t !…&S>VS
„X~ t;S!…. ~21!

Since the latter is determined from Eq.~20!, where actually
the right-hand side is the average Lagrangian velocity,
can deduce thatX(t;S) is an approximation of the averag
trajectory in (S),

X~ t;S!>^x~ t !&S . ~22!

We note that actually the approximation~21! for the av-
erage Lagrangian velocity in~S! can be obtained using
Corrsin factorization in~S! and neglecting all cumulants o
the stochastic trajectories except the first one@1#. It is pos-
sible to keep the second cumulant, too, but it has a nega
effect on the results: the trapping process is not prop
described and the invariance of the average Lagran
stream function in~S! is lost. It is known@1,2# that when
such approximations are performed in the whole set of r
izations, the results are even more inaccurate and they do
describe at all the trapping process and the invariance of
stream function. Thus, the space-time decorrelation tra
tory method@11# is rather good, although it is apparent
based on a rough approximation. Any attempt to impro
this method should satisfy the requirement of the invaria
of the stream function.

The average Lagrangian quantities in the whole ensem
of realizations off can be obtained by summing up th
contributions of each subensemble (S). The average La-
grangian velocity and the LVC@defined in Eq.~8!# can be
written as

^v„x~ t !…&5E E df0 dv0 P1~f0!P1~v0!^v„x~ t !…&S ,

~23!
06630
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Li j ~ t !5E E df0 dv0 P1~f0!P1~v0!^v i~0!v j„x~ t !…&S

2Vdi^v j„x~ t !…&S , ~24!

where P1(f0) and P1(v0) are, respectively, the Gaussia
probability densities of the stream function and of the velo
ity in the point x50. We note that the LVC in the suben
semble~S! is not stationary as the LVC in whole set of rea
izations. However, one needs to estimate o
^v i(0)v j„x(t)…&S which is simply ^v i(0)v j„x(t)…&S

5v i
0^v j„x(t)…&S . Thus, the LVC and the average Lagrangi

velocity can be obtained by estimating the average Lagra
ian velocity in each subensemble (S). The latter is obtained
by solving Eqs.~20! and using Eq.~21!. The LVC can thus be
written as

Li j ~ t !>E E df̃0 dṽ0 P1~f̃0!P1~ ṽ0!ṽ i
0Vj

S
„X~ t;S!….

~25!

The time-dependent diffusion coefficient is obtained by in
grating Eq.~25! according to Eq.~10! as

Di j ~ t !>E E df̃0 dṽ0 P1~f̃0!P1~ ṽ0!ṽ i
0Xj~ t;S! ~26!

and is thus determined by the average trajectories in the
ensembles. We note that Eqs.~25! and~26! are approximate
equations valid for arbitrary values of the Kubo number a
of Vd .

In order to obtain an explicit solution for the LVC and th
diffusion coefficient, we choose a model for the Euleri
correlation of the stream function~3!:

E~r ![E~r !5
1

11
r 2

2

, ~27!

wherer[uxu. The equations~20! for the average trajectory in
~S! become:

dX1

dt
5Vd1f0

X2E8

R
1

u

R3
@~X1

2E81X2
2RE9!cosa

2X1X2~RE92E8!sina#,

dX2

dt
52f0

X1E8

R
2

u

R3
@X1X2~RE92E8!cosa

2~X2
2E81X1

2RE9!sina#, ~28!

wherea is the angle betweenṽ0 and Vd , u5uṽ0u, E8(R),
E9(R) are the first and second derivatives ofE(R), and R
5AX1

21X2
2. The trajectory obtained from Eq.~28! evolves

on the contour line of the average stream functionFS(X)
5FS(0)5f0 in the subensemble. The effect of the drift v
locity Vd is the opening of a set of paths. This can be seen
4-4
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Fig. 1 where some paths corresponding toVd50 and Vd
50.1 are plotted. In the driftless case, all paths except
corresponding tof050 are closed curves@Fig. 1~a!#, while
at VdÞ0 the paths are opened for an interval of values off0

aroundf050 whose size increases whenVd increases@Fig.
1~b!#. There are still trapped average trajectories~in the sub-
ensembles with large absolute values of the stream func
f0) but the drift Vd has a releasing effect for the avera
trajectory in the subensembles with smallf0. The average
trajectories obtained from Eq.~28! are functions of time, of
the three parameters that define the subensemble~S!, f0, u,
a, and ofVd . In the driftless case, the average trajector
are function of a scaled timeu5ut and of a single paramete
p5f0/u. The drift velocity Vd breaks the isotropy of the
space introducing the dependence ona and also leads to
more complicated average paths determined by four inde
dent parameters. This largely increases the computation t
The solutions of Eqs.~28! keep, however, the following
symmetry relations:

FIG. 1. ~a! Examples of average paths for the driftless caseVd

50 for f050, 60.1, 60.2, . . . ,u51 anda52p/4. The size of
the paths decreases continuously with the increase ofuf0u. ~b! Same
as in ~a!, but for a nonzero average velocity,Vd50.05.
06630
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X1~ t;2f0,u,2a!5X1~ t;f0,u,a!,

X2~ t;2f0,u,2a!52X2~ t;f0,u,a!. ~29!

When used in the integrals in Eqs.~26! these lead to

D12~ t !5D21~ t !50,

D11~ t !5
2b

~2p!3/2E E
0

`

df0 du u2 expS 2
f021u2

2 D
3E

0

2p

da cosaX1~ t;f0,u,a!,

D22~ t !5
2b

~2p!3/2E E
0

`

df0 du u2 expS 2
f021u2

2 D
3E

0

2p

da sinaX2~ t;f0,u,a!. ~30!

Thus the diffusion tensor is diagonal and so is the LVC t
is obtained from Eq.~30! by replacingXi by Vi

S
„X(t;S)….

The trapped average trajectories do not contribute to
asymptotic diffusion coefficient nor to the large time LV
because they are incoherently mixed in the integrals. O
the opened average trajectories contribute at large ti
Their asymptotic expressions, deduced from Eq.~28! and
from the conservation of the average stream function~15!,
are X1(t;S)>C(S)1Vdt and X2(t;S)>2f0/Vd for t@t f .
Introduced in Eqs.~30! they show thatD11(t) has an
asymptotic behavior linear in timeD11(t)→La(Vd)t and that
D22(t)→0. The constantLa(Vd) is the large time correlation
of the velocity alongVd ,

La~Vd!5 lim
t→`

L11~ t !, ~31!

and since for the released trajectoriesV1„X(t;S)…→Vd , one
can see from Eq.~25! that La can be written as

La~Vd!5Ṽ 0~Vd!Vd , ~32!

whereṼ 0(Vd) is the average ofṽ1
0 taken for the trajectories

which are released byVd . This quantity is not zero becaus
the release of the trajectories appears especially whenṽ0 is
directed alongVd @aP(2p/2,p/2)#. An apparently para-
doxical result is obtained, namely that particle trapping d
termines a superdiffusive transport.

Thus, a small average driftVd produces the transition
from the subdiffusive regime to a superdiffusive one in t
direction ofVd , while acrossVd the process remains subdi
fusive. The superdiffusion is due to a large time remn
correlation of the velocity determined essentially by the f
that the escaped trajectories ‘‘remember’’ the initial con
tion that situated them on paths which open to infinity.

The time evolution of the diffusion coefficients~30! is
presented in Fig. 2~a! for Vd50.02. Two dimensionless char
acteristic times can be noticed there: the flight timet f51
and the drift timetd51/Vd , which is the time necessary t
4-5
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traverse the correlation length with the average velocity.
small time t (t,t f), the initial ballistic regime is observe
Dii (t)>t and att.t f trajectory trapping becomes effectiv
and produces the decay of the diffusion. The diffusion
isotropic at this timeD11(t)5D22(t) and both are actually
equal to the diffusion coefficient obtained forVd50 ~dashed
line!. The effect of the average velocity appears fort*td
and determines the anisotropy of the diffusion. The diffus
coefficient alongVd increases and eventually reaches
ballistic regimeD11(t)>Lat. The crossVd diffusion coeffi-
cient rapidly decays to zero@asD22(t);t23 in this case#. It
is interesting to see how this picture evolves whenVd in-
creases. WhenVd.1, no trapping decay appears and t
asymptotic ballistic regime is pushed at later times and a n
transient regime of slowly increasingD11(t) appears@see
Fig. 2~b! for Vd51]. As Vd still increases, the slope of th
transient regime goes to zero and its size extends tot→`.
Thus, atVd@1 a diffusive regime is obtained@see Fig. 2~c!
for Vd510].

The dispersion acrossVd is subdiffusive for all values of
the average velocity. The decay to zero ofD22(t) depends on
the largeuxu tail of the EC of the stream function and it ca
be obtained analytically as

D22~ t !;
f ~Vd!

Vd
uE 8~Vdt !u, t@td ~33!

where f (Vd)5*df0 du da exp(2f02/22u2/2)u3 sin2 a,
with the limits of integration depending onVd , since the
integral is performed on the domain of initial conditions co
responding to untrapped trajectories. For the EC~27!, the
asymptotic time dependence of the perpendicular diffus
coefficient isD22(t);t23 for all values ofVd . At largeVd ,
when trajectory trapping is negligible,f (Vd)→1.

The average Lagrangian velocity is obtained from E
~23! as

^v1„x~ t !…&5
2

~2p!3/2E E
0

`

df0 du uexpS 2
f021u2

2 D
3E

0

2p

daV1„X~ t;S!… ~34!

and its time evolution is shown in Fig. 2~a!. At small time
t,t f the average Lagrangian velocity equals the Euler
averageVd and at t.t f it decays to a smaller asymptot
value due to the trapping of a part of the trajectories@whose
contributions vanish due to incoherent mixing in the in
grals in Eq.~34!#. The fraction of the untrapped trajectorie
n(Vd) can be obtained from the average Lagrangian velo
as

n~Vd!5 lim
t→`

^v1„x~ t !…&
Vd

. ~35!

WhenVd.1, n(Vd)>1 and^v1(x(t)&5Vd .
The remnant correlationLa(Vd) and the number of un

trapped trajectoriesn(Vd) are plotted in Fig. 3. One can se
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that n(Vd)→1 at largeVd showing that all trajectories ar
released.La(Vd) decays rapidly to zero whenVd.1 and
thus the asymptotic ballistic term in the parallel diffusio
disappears and the motion becomes diffusive at largeVd . At
Vd,1, the asymptotic MSD is

^x1
2~ t !&5@n2~Vd!Vd

21La~Vd!#t2, t@td ~36!

and the effective ballistic velocity appears asVb

5An2(Vd)Vd
21La(Vd) which is larger thanVd .

In conclusion, we can say that particle motion in a bias
static stream function is rather complex and all the th
types of evolution of the MSD appear: subdiffusion perpe
dicular to Vd ; superdiffusion and diffusion alongVd , de-
pending on the value of the average velocityVd . The effec-
tive transport results from a competition between t
trapping effect produced by the fluctuating part of the s
chastic velocity field and the releasing effect determined
the average velocity.

IV. TIME-DEPENDENT TURBULENCE

We consider here the case of particle diffusion in a bia
time-dependent stochastic stream functionf(x,t). The cor-
relation timetc and the Kubo numberK are finite. We use
the same decorrelation trajectory method as in the static c

The aim is to estimate the averages of the Lagrang
velocity in the subensembles~S! which are sufficient for cal-
culating the LVC and the running diffusion coefficient. Th
difficulty comes from the fact that the average of the L
grangian stream function is not known in the time-depend
problem: Eq.~18! is not valid in this case since the strea
function is no longer conserved along the trajectory in ea
realization. However, the velocity is always tangent to t
contour lines off(x,t) and only the explicit time variation
of the stream function contributes to its variation along t
trajectory,

df„x~ t !,t…/dt5]f„x~ t !,t…/]t. ~37!

This equation can be used, in the particular case of the EC
f(x,t) of the type~3!, for determining the average of th
Lagrangian stream function. The latter will be used as a c
straint in determining the approximation for the average L
grangian velocity in~S!. The average Eulerian stream fun
tion FS(x,t) in a subensemble~S! can be written according
to Eq. ~15! as

FS~x,t !5Vdx21F̃S~x!h~ t !, ~38!

where F̃S(x)5f̃0E1 ṽ i
0Eif . In Lagrangian coordinates

x(t), this quantity has the following general structure:

FL
S~ t ![^f„x~ t !…,t&S5Vd^x2~ t !&S1G~ t !h~ t ! ~39!

because the first term of Eq.~38! determines the first term in
Eq. ~ 39! and the time factorh(t) propagates unchange
from Eulerian to Lagrangian coordinates. Thex dependence
of the stream function~i.e., the nonlinearity! generates the
4-6
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FIG. 2. ~a! The time-dependent diffusion coefficientsD11(t) and
D22(t) normalized withb @Eqs. ~30!# and the average Lagrangia
velocity VL(t)[^v1„x(t)…& @Eq.~34!#. The diffusion coefficient for
the driftless case~dashed line! is also represented for comparisio
Vd50.02. ~b! Same as in~a! for Vd51. ~c! Same as in~a! for Vd

510.
06630
other time functionG(t) @which depends also onVd and on
h(t)]. Averaging Eq.~37! in the subensemble and using E
~39! one obtains

d

dt
FL

S~ t !5 lim
dt→0

^f„x~ t !…,t1dt&S2^f„x~ t !…,t&S

dt

5G~ t !h8~ t !. ~40!

Differentiating Eq.~39! and using Eq.~40!, an equation for
G(t) is obtained,

Vd

d

dt
^x2~ t !&S1G8~ t !h~ t !50, ~41!

whose formal solution is

G~ t !5f02VdE
0

t

dt
1

h~t!

d

dt
^x2~t!&S . ~42!

The subensemble average of the Lagrangian stream func
can thus be represented as a functional of the average tr
tory in (S),

FL
S~ t !5f0h~ t !2VdS h~ t !E

0

t

dt
1

h~t!

d

dt
^x2~t!&S

2^x2~ t !&SD . ~43!

We define, as in the static case, a deterministic trajec
X(t;S) so that the average of the Lagrangian stream func
equals the average of the Eulerianf calculated along this
trajectory:

FL
S~ t !5FS

„X~ t;S!,t…. ~44!

FIG. 3. The fraction of untrapped trajectoriesn(Vd) and the
remanent Lagrangian correlationLa(Vd) as functions ofVd .
4-7
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As in the static case we approximate the average Lagran
velocity by the Eulerian average calculated along the de
ministic trajectoryX(t;S),

^v„x~ t !,t…&S5VS
„X~ t;S!,t…. ~45!

The average trajectory in the subensemble~S! can be deter-
mined by

d^x~ t !&S

dt
5VS

„X~ t;S!,t…. ~46!

We note that Eqs.~44!, ~45!, and ~46! are actually useful
only if an equation for the deterministic trajectoryX(t;S)
can be deduced.

The average of the Lagrangian stream function~43! can
be written using Eq.~46! as a functional of the deterministi
trajectoryX(t;S),

FL
S~ t !5f0h~ t !2VdE

0

t

dt V2
S
„X~t;S!,t…S h~ t !

h~t!
21D .

~47!

We show that the solution of Eq.~44! whereFL
S(t) is given

by Eq. ~47! can be obtained from the following time
dependent Hamiltonian system of equations withFS(X,t) as
the Hamiltonian function:

dX„t;S)

dt
5S ]

]X2
,2

]

]X1
DFS~X,t ! ~48!

and initial conditionX„0;S)50. Using Eq.~38!, one can de-
termine the variation ofFS(X,t) along the solution of Eq.
~48! as

dFS
„X„t;S),t…

dt
5@FS

„X„t;S!,t…2VdX2~ t;S!]
h8~ t !

h~ t !

which integrated formally leads to

FS
„X„t;S),t…5f0h~ t !2VdE

0

t

dt V2
S
„X~t;S!,t…S h~ t !

h~t!
21D .

~49!

Comparing Eqs.~47! and~49!, we conclude that the solutio
of Eq. ~48! ensures the equality of the two terms of Eq.~44!
at any time. The deterministic trajectoryX„t;S), the solution
of Eq. ~48!, is thus an approximation of the average traje
tory in the subensemble~S!. We note that the essential con
dition in obtaining these results is the factorization of t
time and space dependences in the EC of the stream f
tion. For general time-dependent stream functions that do
have factorized EC, it was not possible to determine the
erage Lagrangian potential in~S!. This method can still be
used but without the insurance of taking into account
important constraint imposed by the stream function. T
average Lagrangian velocity and the time dependent di
sion coefficients are calculated according to Eqs.~34! and
~30!, respectively, as in the static case.
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The results are, however, rather different. Due to the ti
variation of the stream function, the average velocity in ea
subensemble goes asymptotically toVd and the average tra
jectories obtained from Eq.~48! are all opened to infinity

X1~ t !>C1~S!1Vdt, t@K. ~50!

The trapping process still appears but it is only tempo
after performing a number of rotations@dependent on the five
parameters in Eq.~48!#, the initially trapped trajectories es
cape to infinity alongVd . Consequently,n(Vd)51 and
La(Vd)50 for arbitrary values ofVd . A finite asymptotic
diffusion coefficient alongVd is obtained from Eq.~30!. It is
determined from the first term in Eq.~50!, the second one
exactly vanishes by integration overa. The perpendicular
diffusion coefficientD22 saturates at a nonzero value in th
time-dependent case. This can be seen in the asymptotic
proximation of Eq.~48!, which can be written as

dX2

dt
>2h~ t !

1

Vd

]

]t
DFS~Vdt !, t@K.

The solution isX2(t)>2DFS(VdK)/Vd and it determines in
Eq. ~30! the following estimate for the asymptotic perpe
dicular diffusion coefficient using the EC~27!:

D22; f ~Vd!
K

S 11
K2Vd

2

2 D 2 , K@
1

Vd
~51!

where f (Vd) is the integral defined after Eq.~33! and ac-
counts for particle trapping. At largeVd , f (Vd)→1 and the
quasilinear result~12! is recovered. Thus, the diffusion coe
ficient perpendicular toVd is strongly dependent on the Eu

FIG. 4. Same as in Fig. 2~a! but for the time-dependent cas
(K5100). The saturation of the diffusion coefficients can be o
served.
4-8
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lerian correlation of the stream function. The parallel diff
sion coefficient also depends on the EC but the depend
is similar to that found in the driftless case in@11# and is
rather weak.

An example of the time evolution of the diffusion coeffi
cients is presented in Fig. 4 where the transitory regim
obtained in the static case@Fig. 2~a!# can be seen up tot
,tc . Whent*tc the saturation of the diffusion coefficien
appears in both directions. The average Lagrangian velo
also plotted in this figure, shows the presence of the temp
trapping of the trajectories: it is equal toVd at t!t f , then it
decays due to trapping and att*tc it increases up to the
Eulerian value due to the time variation of the stream fu
tion which releases all trajectories.

The asymptotic diffusion coefficientsD11 and D22 are
presented in Fig. 5 as functions of the average drift veloc
Vd for various values of the Kubo numberK. Three regimes
can be identified. WhenKVd!1, the average velocity doe
not influence the diffusion and the transport is isotropic.
Vd.1, the quasilinear result@Eqs. ~11! and ~12!# described
in Sec. II is recovered. When there is no trajectory trapp
(K!1) only these two regimes appear. In the nonlinear c
(K.1) there is a third~‘‘anomalous’’! diffusion regime
which is determined by the combined action of the aver
velocity and trajectory trapping. It appears whenVd,1 and
K.1 so thatKVd.1 ~beyond the vertical dotted lines i
Fig. 5! and consists of a very strong amplification of t
parallel diffusion coefficient and a decrease of the perp
dicular diffusion ~see Fig. 5!; the dependence ofVd of the
latter can be approximated by Eq.~51! and is weaker than in
the quasilinear case due to trajectory trapping@by the factor
f (Vd)]. We note that in this regime an average veloc
smaller than the stochastic one (Vd,1) determines very im-

FIG. 5. The parallel, D11, and the perpendicular,D22,
asymptotic diffusion coefficients as functions ofVd for K54, 20,
and 100.
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portant modifications of the diffusion coefficients while
the quasilinear case the effect appears only at drift veloci
larger than the amplitude of the stochastic velocity (Vd.1).

V. CONCLUSIONS

In conclusion, we have obtained here analytical expr
sions for the Lagrangian velocity correlations and for t
time-dependent diffusion coefficients of particle motion
divergence-free stochastic velocity fields with constant av
ageVd . These results have been obtained by the decorr
tion trajectory method. It applies to Gaussian stocha
fields which are homogeneous and stationary. We cons
both the static and the time-dependent problems.

For static stream functions, we have shown that the dr
velocity Vd produces the transition from the subdiffusiv
process to a superdiffusive or diffusive transport, depend
on the value ofVd . In the absence of the average veloc
(Vd50), all trajectories are trapped on the level lines of t
stream function and particle motion is subdiffusive. A sm
average velocity (Vd,V) releases only a fraction of trajec
tories, n(Vd); the other remaining trajectories are localiz
on small size contour lines of the stream function. A dire
consequence of trajectory trapping is evidenced in the a
age Lagrangian velocity which is smaller than the Euler
one by the factorn(Vd). A more subtle and apparently para
doxical consequence of trapping is the superdiffusive, ba
tic behavior of the MSD and of the parallel diffusion coef
cient at large times. This is determined by the persistenc
a long time correlation of the fluctuating Lagrangian veloc
parallel toVd . We determine the fraction of untrapped tr
jectoriesn and the asymptotic Lagrangian velocity correl
tion La for arbitrary values ofVd . As Vd grows aboveV,
n(Vd)→1 andLa(Vd) rapidly decays to zero, showing tha
all trajectories are released in the presence of such a l
drift. Consequently, a diffusive regime is obtained at lar
Vd . The transport acrossVd remains subdiffusive for all val-
ues of the drift velocity.

For time-dependentstream functions, the transport is di
fusive both parallel and perpendicular toVd . We show that
the average velocity can produce a very large amplificat
of the diffusion parallel toVd and an important reduction o
the perpendicular diffusion coefficient. The diffusion coef
cients are determined for arbitrary values ofVd and of the
Kubo numberK. An ’’anomalous’’ regime is identified and
is shown to correspond to the existence of trajectory tr
ping. It appears for average velocities smaller than the a
plitude of the fluctuating part of the stochastic velocity (Vd
,V) and at large Kubo numbers so thatKVd /V.1.
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